
Matt Ström-Awn Writing Abo*t

How to generate co,or pa,et.es for
design systems
Apr 20' 2024 · 46 min read

OKHsl
sRGB Hex

OKHsl
sRGB Hex

OKHsl
sRGB Hex

Ne-tral - OKHsl
Ne-tral - sRGB Hex
Bl-e - OKHsl
Bl-e - sRGB Hex

Ne-tral - OKHsl
Ne-tral - sRGB Hex
Bl-e - OKHsl
Bl-e - sRGB Hex

Ne-tral - OKHsl
Ne-tral - sRGB Hex
Bl-e - OKHsl
Bl-e - sRGB Hex

Green - OKHsl
Green - sRGB Hex
Red - OKHsl
Red - sRGB Hex
Yellow - OKHsl
Yellow - sRGB Hex

Green - OKHsl
Green - sRGB Hex
Red - OKHsl
Red - sRGB Hex
Yellow - OKHsl
Yellow - sRGB Hex

Green - OKHsl
Green - sRGB Hex
Red - OKHsl
Red - sRGB Hex
Yellow - OKHsl
Yellow - sRGB Hex

Scale n-mber
OKHsl
sRGB Hex

Scale n-mber
OKHsl
sRGB Hex

Scale n-mber
OKHsl
sRGB Hex

Scale n-mber
OKHsl
sRGB Hex

Scale n-mber
OKHsl
sRGB Hex

Scale n-mber
OKHsl
sRGB Hex

Scale n-mber
OKHsl
sRGB Hex

Scale n-mber
OKHsl
sRGB Hex

Scale n-mber
OKHsl
sRGB Hex

Scale n-mber
OKHsl
sRGB Hex

Scale n-mber
OKHsl
sRGB Hex

It used to be easy to pick colors for design systems.
Years ago, you could pick a handful of colors to
match your brand’s ethos, or start with an off-the-
shelf palette (remember flatuicolors.com?). Each hue
and shade served a purpose, and usually had a
quirky name like “idea yellow” or “innovation blue”.
This hands-on approach allowed for control and
creativity, resulting in color schemes that could
convey any mood or style.

But as design systems have grown to keep up with
ever-expanding software needs, the demands on
color palette have grown exponentially too. Modern
software needs accessibility, adaptability, and
consistency across dozens of devices, themes, and
contexts. Picking colors by hand is practically
impossible.

This is a familiar problem to the Stripe design team.
In “Designing accessible color systems,” Daryl
Koopersmith and Wilson Miner presented Stripe’s
approach: using perceptually uniform color spaces to
create aesthetically pleasing and accessible systems.
Their method offered a new approach to selection to
enhance beauty and usability, grounded in scientific
understanding of human vision.

In the four years since that post, Stripe has stretched
those colors to the limit. The design system’s
resilience through massive growth is a testament to
the team’s original approach, but last year we started
to see the need for a more flexible, scalable, and
inclusive color system. This meant both an expansion
of our color palette and a rethinking of how we
generate and apply these colors to accommodate our
still-growing products.

This essay will take you through my attempts to
solve these problems. Through this process, I’ve
created a tool for generating expressive, functional,
and accessible color systems for any design system.
I’ll share the full code of my solution at the end of
the essay; it represents not just a technical solution
but a philosophical shift in how we think about color
in design systems, emphasizing the balance between
creativity and inclusivity.

Why don(t the existing too/s work?

In the past few years, I’ve come across dozens of
tools that promise to generate color palettes for
design systems. Some are simple, like Adobe Color,
which generates color palettes based on a single
input color, or even an image. Others are more
complex, like Colorbox, which generates color scales
based on a long list of parameters, easing curves,
and input hues.

But I’ve found that each of these tools has critical
limitations. Complex tools like Colorbox or color x
color allow for a high degree of customization, but
they require a lot of manual input and don’t provide
guidelines for accessibility. Simple tools like Adobe’s
Color and Leonardo provide more constraints and
accessibility features, but they does so at the expense
of flexibility and extensibility.

None of the tools I’ve found can integrate tightly
with an existing design system; all are simply apps
that generate an initial set of colors. None can
respond to the unique constraints of your design
system, or adapt as you add more themes, modes, or
components.

That’s why I ended up going back to first principles,
and decided to build up a framework that can be
adapted to any codebase, design tool, or end user
interface.

So what makes a good co/or pa/et9e?

To build palettes from first principles, we need a
strong conceptual foundation. A great color palette is
like a Swiss Army knife, built to address a wide array
of needs. But that same flexibility can make the
system unwieldy and clunky. Through years of
working on design systems, two principles have
emerged as a constant benchmark for quality color
palettes: utility and consistency.

A color palette with high utility is vital for a robust
design system, encompassing both adaptability and
functionality. It should offer a wide array of shades
and hues to cater to diverse use cases, such as status
changes—reds for errors, greens for successes, and
yellows for warnings—and interaction states like
hovering, disabled, or active selections. It’s also
essential for signifying actionable items like links and
buttons. Beyond functionality, an adaptable palette
enables smooth transitions between light, dark, and
high contrast modes, supporting the evolution of
your product and differing brand expressions. This
ensures that your user interfaces remain consistent
and recognizable across various platforms and usage
contexts. Moreover, an adaptable palette underscores
a commitment to accessibility—it should provide
accessible contrast ratios across all components,
accommodating users with visual impairments, and
offer high-contrast modes that enhance visibility and
functionality without sacrificing style.

Consistency is another crucial aspect of a well-
designed color palette. Despite the diverse range of
components and their variants, a consistent palette
maintains a coherent visual language throughout the
system. This coherence ensures that elements like
badges retain a consistent visual weight, avoiding
misleading emphasis, and the relative contrast of
components remains balanced between dark and
light modes. This consistency helps preserve clarity
and hierarchy, further enhancing the user experience
and the overall aesthetics of the design system.

As you’ll see, even simple questions about these
goals reveals a deep rabbit hole of possible solutions.

Thro%gh the *ooking g*ass: percept%a*
%niformity

The principles of utility and consistency make
selecting a color palette more complex. There’s a
question at the heart of both constraints: what makes
two colors look different? We have an intuitive sense
that yellow and orange are more similar than green
and blue, but can we prove it objectively? Scientists
and artists have spent the last decade puzzling this
out, and their answer is the concept of perceptual
uniformity.

Perceptual uniformity is rooted in how our eyes
work. Humans see colors because of the interaction
between wavelengths of light and cells in our eyes.
In 1850, before we could look at cells under a
microscope, scientist Hermann von Helmholtz
theorized that there were three color vision cells
(now known as cones) for blue, green, and red light.

Thomas Yo6ng and Hermann von Helmholtz ass6med that the
eye>s retina consists of three different kinds of light receptors
for red' green and bl6e. P6blic Domain via Wikipedia

Most modern screens depend on this century-old
theory, mixing red, green, and blue light to produce
colors. Every combination of these colors produces a
distinct one; 10% red, 50% green, and 25% blue
light create the cartoon green of the Simpson’s yard.
75% red, 85% green, and 95% blue is the blindingly
pale blue of the snow in Game of Thrones.

Von Helmholtz was amazingly close to the truth, but
until 1983, we didn’t have a full understanding of
the exact way that each cell in our eyes responds to
light. While it’s true that we have three kinds of color
vision cells, and that each responds strongly to either
red, green, or blue light, the full mechanism of color
vision is much more nuanced. So, while it’s
technologically simple to mix red, green, and blue
lights to reproduce color, the red, green, and blue
coordinate system — the RGB color space — isn’t
perceptually uniform.

Picking the right co*or space

Despite not being perceptually uniform, many design
systems still use RGB color space (and its derivative,
HSL space) for picking colors. But over the past
century, scientists and artists have invented more
useful ways to map the landscape of color. Whether
it’s capturing skin tones accurately in photographs or
creating smooth gradients for data visualization,
these different color spaces give us perceptually
uniform paths through a gamut.

Lab is an example of a perceptually uniform color
space. Developed by the International Commission
on Illumination, or CIE, the Lab color space is
designed to be device-independent, encompassing all
perceivable colors. Its three dimensions depict
lightness (L), and color opponents (a and b) — the
latter two varying between green-red and blue-
yellow axes respectively. This makes it useful for
measuring the differences between colors. However,
it’s not very intuitive; for example, unless you’ve
spent a lot of time working with the lab color space,
it’s probably hard to imagine what a pair of (a, b)
values like (70, -15), represents.¹

LCh (Luminosity, Chroma, hue) is more ergonomic,
but still perceptually uniform color space. It’s a
cylindrical color space, which means that along the
hue axis, colors change from red to blue to green,
and then back to red — like traveling on a
roundabout. Along the way, each color appears
equally bright and colorful. Moving along the
luminosity axis, a color appears brighter or dimmer
but equally colorful, like adjusting a flashlight’s
distance from a painted wall. Along the chroma axis,
a color stays equally bright but looks more or less
colorful, like it’s being mixed with different amounts
of gray paint.

The LCh color space. Note the 6neven peaks of chroma at
different h6es. via H6eplot

LCh trades off some of lab’s functionality for being
more intuitive. But LCh can be clunky, too, because
the C (chroma) axis starts at 0 and don’t have a strict
upper limit. Chroma is meant to be a relative
measure of a color’s “colorfulness”. Some colors are
brighter and more colorful than others: is a light
aqua blue as colorful as a neon lime green? How
does a brick red compare to a grape soda purple?
The chroma scale is meant to make these
comparisons possible.

But try for a moment to imagine a sea green as rich
and deep as an ultraviolet blue. Lab and LCh both let
you specify these “impossible” colors that don’t have
a real-world representation. In technical parlance,
they’re called “out of gamut,” since they can’t be
produced by screens, or seen by human eyes.

The existence of out-of-gamut colors makes it hard to
reliably build a color system in LCh or lab color
space. Finding colors with consistent properties is a
manual process; when Stripe was building its
previous color system using lab, the team made a
specialized tool for visualizing the boundaries of
possible colors, allowing designers to tweak each
shade to maximize its saturation. This isn’t a tenable
solution for most teams; what if there was a color
space that combined the simplicity of RGB and HSL
with the perceptual uniformity of lab and LCh?

Björn Ottosson, creator of the OKLab color space, did
just that in his blog post “OKHsv and OKHsl — two
new color spaces for color picking.” OKHsl is similar
to Lch in that it has three components, one for hue,
one for colorfulness, and one for lightness. Like LCh,
the hue axis is a circle with 360 degrees. The
lightness axis is similar to Lch’s luminosity, going
from 0 to 1 for every hue. In place of Lch’s chroma
channel, though, OKHsl uses an absolute saturation
axis that goes from 0 to 1 for every hue, at every
lightness. 0 represents the least saturated color
(grays ranging from white to black), and 1
represents the most saturated color available in the
sRGB gamut.

The OKHsl color space. It>s a cylinder' which makes it m6ch
better for generating color palettes. via H6eplot

Practically, OKHsl allows for easier color selection
and manipulation. It bypasses the issues found in
LCh or lab, creating an intuitive, straightforward,
and user-friendly system that can produce the
desired colors without worrying about out-of-gamut
colors. That’s why it’s the best space for generating
color pallettes for design systems.

Using OKHs*

Practically speaking, to use OKHsl, you need to be
able to convert colors to and from sRGB. This is a
fairly straightforward calculation, but it’s not built
into most design tools. Bjorn Ottosson linked the
javascript code to do this conversion in his blog post,
and the library colorjs.io will soon have support for
OKHsl.

Going forward, I’ll assume you have a way to convert
colors to and from OKHsl. If you don’t, you can use
the code I’ve written to generate a color palette in
OKHsl, and then convert it to sRGB for use in your
design system.

First steps with generated sca/es

To get started generating our color scales, we need a
few values:

1. The hue of the color we want to generate
2. The saturation of the color we want to generate
3. A list of lightness values we want to generate

For example, we can generate a cool neutral color
scale by choosing these values:

1. Hue: 250
2. Saturation: 5
3. Lightness values:

Light: 85
Medium: 50
Dark: 15

Using those values to pick colors in the OKHsl color
space, we get the following palette:

250> 5> 85
 #d2d5d8

250> 5> 50
 #73787c

250> 5> 15
 #212325

We can do the same thing for all our colors, picking
numbers to build out the entire system.

250> 5> 85
 #d2d5d8

250> 90> 85
 #b6d9fd

250> 5> 50
 #73787c

250> 90> 50
 #1a7acb

250> 5> 15
 #252628
250> 90> 15

 #022342

145> 90> 85
 #6af778
20> 90> 85
 #fec3ca
100> 90> 85

 #eed63d

145> 90> 50
 #388b3f
20> 90> 50
 #d32d43
100> 90> 50

 #877814

145> 90> 15
 #0c2a0e
20> 90> 15

 #45060f
100> 90> 15

 #282302

Sca/ing ;p

For bigger projects, you’ll often need more than just
three shades per color. Choosing the right number
can be tricky: too few shades limit your options, but
too many can cause confusion.

This can seem daunting, particularly in the early
stages of your design system. But there’s a method to
simplify this: use a consistent numbering system,
ensuring your color choices remain versatile no
matter how your system evolves.

This system is often referred to as ‘magic numbers.’ If
you’re familiar with Tailwind CSS or Material Design,
you’ve seen this in action. Instead of naming shades
like ‘light’ or ‘dark,’ each shade gets a number. For
instance, in Tailwind, the scale goes from 0 to 1,000,
and in Material Design, it’s 0 to 100. The extremes
often correspond to near-white or near-black, with
middle numbers denoting pure hues.

The beauty of this system is its flexibility. If you
initially use shades named ‘red 500’ and ‘red 700’,
and later need something in between, you can
simply introduce ‘red 600’. This keeps your design
adaptable and intuitive. Another bonus of magic
numbers is that we can often plug the number
directly into a color picker to scale the lightness of
the shade. That’s why, for the rest of this essay, I’ll
call these scale numbers.

For example, if we wanted to create a more extensive
color scale for our blues, we could use the following
values in the OKHsl color space:

0
250> 90> 100

 #ffffff

10
250> 90> 90

 #cfe5fe

20
250> 90> 80

 #9dccfd

30
250> 90> 70

 #68b1f9

40
250> 90> 60

 #3395ed

50
250> 90> 50

 #1b7acb

60
250> 90> 40

 #0f60a3

70
250> 90> 30

 #08477c

80
250> 90> 20

 #032f55

90
250> 90> 10

 #01172e

100
250> 90> 0
 #000000

We’ve turned the scale number into the lightness
value with the function . In this
formula, n is a normalized value — one that goes
from 0 to 1 — that represents our scale number, and
L(n) is the lightness value in OKHsl.

It turns out that using functions and formulas in
combination with scale numbers is a powerful way to
create expressive color scales that can power
beautiful design systems.

Making sca/es expressive: Leveraging h;e
and sat;ration

One advantage of scale numbers is the ability to plug
them directly into a color picker to dictate the
lightness of a shade. But scale numbers really show
their usefulness and versatility when you leverage
them across every component of your color system.
That means venturing beyond lightness to explore
hue and saturation, too.

H%e

When using scale numbers to control lightness, it’s
easy to assume hue and saturation will behave
consistently across the lightness range. However, our
perception of color doesn’t work that simply.

Hue can appear to shift dramatically between light
and dark shades of the same color due to a
phenomenon called the Bezold–Brücke effect: colors
tend to look more purplish in shadows and more
yellowish in highlights.

So if we want to maintain consistent hue perception,
we can use scale numbers for adapting the hues of
our color scales. As lightness decreases, blues and
reds should shift slightly towards more violet/purple
tones to counteract the Bezold–Brücke effect.
Likewise, as lightness increases, yellows, oranges,
and reds should shift towards more yellowish hues.
²³

P6rple witho6t (top) and with (bottom) acco6nting for the
Bezold–BrQcke shift

Red witho6t (top) and with (bottom) acco6nting for the
Bezold–BrQcke shift

In both examples above, we’ve used the scale
number to shift the hue slightly as the lightness
increases. This looks like the following formula:

. H(n) is the hue at a given
normalized scale value; H is the “base hue” of the
color. The 5*(1 - n) term means the hue will change
by 5 degrees as the scale number goes from one end
to the other. If you’re using this formula, you should
tweak the numbers to your liking.

By making hue a function of lightness, with the scale
number adjusting hue accordingly, hues look more
consistent and harmonious across the entire scale.
The shifts don’t need to be large – even subtle hue
variations of a few percentage points can
perceptually compensate for natural hue shifts with
changing brightness.

Sat%ration and Chroma

From our understanding of the CIE LCh color space
and its sibling, the OKHsl color space, we know that
colors generally attain their peak chroma around the
middle of the lightness scale.⁴

In design, this presents a fantastic opportunity. By
designing our color scales such that the midpoint is
the most chromatically rich, we can make sure that
our colors are the most vibrant and saturated where
it matters most. Conversely, as we veer towards the
lightness extremes, we can have chroma values that
taper off, ensuring that our brightest and darkest
shades remain subtle and balanced.

OKHsl gives us a saturation component that goes
from 0% to 100% of the possible chroma at a given
hue and lightness value. We can take advantage of
this by using the normalized scale number as an
input to a function that goes from a minimum
saturation to a maximum and back again.

Green with constant sat6ration (top) and varying sat6ration
(bottom)

In practice, the formula for achieving this looks like
this: , where S(n) is the saturation
at a given (normalized, as before) scale value n. The
formula is an upside-down parabola, which starts at
0% and peaks at 100% when the scale value is 0.5.

You can add a few terms to adjust the minimum and
maximum saturation if you’d like to adjust the scale
further:

Neutrals, for example, don’t need a high maximum
saturation. But most colors do well moving between
0% and 100% saturation.

@n practice: Craf9ing co/ors with f;nctions

Let’s put this into practice and generate an extensive
color scale with only a handful of functions.
Functions allow us to build a flexible framework that
is resilient to change and can be easily adapted to
new requirements; if we need to add colors, tweak
hues, or adjust saturation, we can do so without
rewriting the entire system.

Pick base h%es

First, let’s pick a handful of base hues. At the very
least, you’ll need a blue for interactive elements like
links and buttons, and green, red, and yellow for
statuses. Your neutrals need a hue, too; though it
won’t show up much, a cool neutral and a warm
neutral have very different effects on the overall
system.

Why donIt the existing tools work?
So what makes a good color palette?

Thro-gh the looking glass: percept-al
-niformity
Picking the right color space
Using OKHsl

First steps with generated scales
Scaling -p
Making scales expressive: Leveraging h-e and
sat-ration

H-e
Sat-ration and Chroma

In practice: Crafting colors with f-nctions
Pick base h-es
Add f-nctions for h-e> sat-ration> and
lightness
Calc-late the colors for each scale n-mber

Making scales adaptive: Using backgro-nd color
as an inp-t
Making scales accessible: B-ilding in the WCAG
contrast calc-lation

Step 1[Calc-late a target contrast ratio based
on scale step
Step 2[Calc-late lightness based on a target
contrast ratio
Step 3[Translate from XYZ Y to OKHsl L

P-tting it all together: All the code yo- need
What does it look like in practice?
What weIve learned and where weIre going

CONTENTS

base

12/1/25, 1:52 PM
Page 1 of 1

